Short-term H2 inhalation improves running performance and torso strength in healthy adults

   In this randomized, double-blind, placebo-controlled, crossover pilot trial, we evaluated the effects of 7-day H2 inhalation on exercise performance outcomes and serum hormonal and inflammation profiles in a cohort of young men and women. All participants (age 22.9 ± 1.5 years; body mass index 23.4 ± 2.5 kg m-2; 10 women and 10 men) were allocated to receive either gaseous hydrogen (4%) or placebo (room air) by 20-min once-per-day inhalation for 7 days, with a wash-out period of 7 days to prevent the residual effects of interventions across study periods. The primary treatment outcome was the change in running time-to-exhaustion in the incremental maximal test from baseline to day 7. Additionally, assessment of other exercise performance endpoints and clinical chemistry biomarkers was performed at baseline and at 7 days after each intervention. The trial was registered at ClinicalTrials.gov (ID NCT03846141). Breathing 4% hydrogen for 20 min per day resulted in increased peak running velocity (by up to 4.2%) as compared to air inhalation (P = 0.05). Hydrogen inhalation resulted in a notable drop in serum insulin-like growth factor 1 (IGF-1) by 48.2 ng/mL at follow-up (95% confidence interval [CI]: from -186.7 to 89.3) (P < 0.05), while IGF-1 levels were elevated by 59.3 ng/mL after placebo intervention (95% CI; from -110.7 to 229.5) (P < 0.05). Inhalational hydrogen appears to show ergogenic properties in healthy men and women. Gaseous H2 should be further evaluated for its efficacy and safety in an athletic environment.

   In conclusion, breathing 4% gaseous hydrogen for 20 min/day for 7 days resulted in increased peak running velocity and attenuated the drop in maximal isometric strength of trunk muscles in a cohort of healthy, physically active young men and women. This was accompanied by hydrogen-driven changes in serum levels of insulin-like growth hormone-1, ferritin and C-reactive protein at follow-up, as compared to room air inhalation. Inhalational hydrogen should be further evaluated for its efficacy and safety in an athletic environment.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6945053/


Older Post Newer Post